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Abstract Recent investigations to develop novel antimicrobial, antibiotical drugs
have focused on the development of artificial protein peptides. As short peptides are
naturally involved in many important biological processes in the cell and therefore
target many kinds of cells. To functionalize peptides it is vital to design peptides,
which can differentially target bacterial and eucariotic cells. Although the length of
the peptides investigated in this study was limited to 16 amino acids, the number of
possible peptide sequences is still too large to synthesize them in a trial- and error man-
ner, therefore requiring a method for directed, but also high-througput peptide design.
By predicting the structure of peptide proteins, this design process can be supported
through structure-function analysis and peptide-membrane interaction simulation. In
this investigation we could predict peptide structures de-novo, i.e. with the sequence
information alone, using a massively parallel simulation scheme. We sample a sizable
fraction of the peptide’s conformational space using Monte-Carlo simulations in the
free-energy forcefield PFF02 on the volunteer computing network POEM@HOME.
This forcefield models the protein’s native conformation as the global minimum of
the free-energy. We could identify peptides of different topologies in a completely
automated manner, which allows for the high-throughput screening of large peptide
databases for their structural features, which would allow the rapid protopying of
peptides needed for novel peptide design.
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1 Introduction

Antimicrobial, antibiotical and antifungal peptides [4,10] are hoped to complement
current antibiotic drugs. The last novel effective new antibiotic drug was released to
market around 1970. As bacteria could adapt to and resist current drugs, effectiveness
of those antibiotics decreased significantly.

Although studied peptide sequences are small (10–20 amino acids) compared to
many proteins in the human body, the sequence space of peptides is still too large
to screen for novel drugs experimentally or in silico by brute-force testing of random
sequences. A fast and accurate structure prediction method for peptide structures could
aid in the design process with insight into structure-function relationships of peptides
and implications of sequence mutations.

Here we present a method for high-throughput peptide structure prediction on our
volunteer distributed computing grid POEM@HOME using about 5000 parallel sim-
ulations for each peptide. We could verify this technique by predicting the structure of
four experimentally known peptide structures of different fold motifs to experimental
resolution [2,3,6,7].

2 Methods

2.1 Forcefield

The free energy PFF02 models the native protein conformation as the global free-
energy minimum [5,8,9] using potentials for Lennard-Jones, Electrostatic, angle-
dependent hydrogen bonding and implicit solvation interactions. To enable the correct
sampling of also the β-region of the Ramachandran plot, a semi-empirical torsion po-
tential is included.

2.2 Simulation protocol

In each Monte Carlo step we randomly perturb one angular degree of freedom, i.e. the
main-chain and side-chain dihedral angles. The new angles are drawn from Gaussian
distributions with a width of 10◦ around the original angles; they are also selected
randomly from a distribution reflecting the naturally occurring distribution of phi- and
psi-angles in the Ramachandran plot. To model the Ramachandran plot we used angles
randomly drawn from equidistributions of two circles of radii 45 at the centers (−125,
135) for the right-handed helical region and (−70, −35) for the β-sheet region of the
Ramachandran plot.

2.3 Poem@Home

All simulations were run on the distributed volunteer computing platform for pro-
tein simulation POEM@HOME using the BOINC [1] framework. POEM@HOME
is a public server in the spirit of SETI@HOME, where volunteers can download the
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Fig. 1 Prediction Algorithm. From sequence input alone, a multitude of annealing simulations are started
on the POEM@HOME volunteer PCs. POEM@HOME keeps track of the energies of these conformations
and returns the best energy one as the structure prediction

protein folding client POEM and continously simulate protein structures on their PCs.
The combined computing power has grown to 30 TFlop/s on average since its start in
August 2008.

Starting from a completely extended conformation, we simulate about 5000 copies
of this conformation in 1.5 million step Monte-Carlo runs using geometric temper-
ature scaled simulated annealing in parallel. Once a population converges, i.e. once
no new structures are discovered, the lowest energy conformation is then chosen as
the predictive model of the experimental structure. This technique was shown to work
with 32 medium-size proteins [8]. Figure 1 illustrates the prediction protocol.

2.4 Clustering

The complete population of simulated structures is clustered by RMSD to elucidate
the importance of low-energy conformations.

1. The current best energy structure is chosen from the population.
2. All structures in the vicinity of the current best structure (RMSD < 1.6 Å) are

joined to a cluster.
3. The structures are moved out of the population.
4. The algorithm repeats from step 1, until the population is empty.

123



424 J Math Chem (2012) 50:421–428

Fig. 2 a Result of the folding simulations of the peptide 1N0D (overlay). The predicted β-fold (green,
in print: light gray) corresponds perfectly with the experimental structure (red–white, in print: dark gray).
b RMSD-Energy Plot of all simulations of 1N0D. The chosen prediction has an all-atom RMSD of 0.85 Å
(circle). c Comparison of the predicted structure of 1FUV (green, in print: light-gray) with the experimental
structure (red, in print: dark gray) with a RMSD of 2.4 Å. d RMSD versus Energy plot of all simulated
conformations for 1FUV. Better conformations could be discovered; they were energetically disfavored.
(Both graphs): Dark red tones (in print: dark gray tones) correspond to hydrophobic amino acids. Light red
to white (in print: light gray to white) corresponds to hydrophilic amino acids (Color figure online)

This generates clusters around minimum energy conformations and does not chose
an energetically not favorable centroid structure as a reprentative conformation of a
cluster. The minimum energy conformations are then chosen from the clusters within
an energy threshold (� E < 2.5 kcal/mol).

3 Results

We verified the prediction framework by folding four peptides of different topology
to experimental resolution. Among these are the one-turn helical fold 1EGS [6], the
β-like fold 1N0D [7] and the two random coil-like folds 1FUV [2] and 2JQU [3] (four
letter codes correspond to RCSB pdb ids).
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Fig. 3 a Result of the folding simulations of the peptide 1EGS. Similiar to the experimental structure (red,
in print: dark gray) the predicted structure shows a shift in the β-like fold. b RMSD-Energy Plot of all
simulations of 1EGS. The chosen prediction has an all-atom RMSD of 1.4 Å (circle). c Comparison of the
predicted structure (green, in print: light gray) of 2JQU with the experimental structure (red, in print: dark
gray). The helical-like fold of 2JQU was identified as native. d RMSD versus Energy plot of all simulated
conformations for 2JQU. Only a few structures of better RMSD than the chosen one of 1.5 Å (circle) were
identified. (Both graphs): Dark red tones (in print: dark gray) correspond to hydrophobic amino acids. Light
red to white (in print: light gray) corresponds to hydrophilic amino acids (Color figure online)

Figure 2a shows the overlay between the predicted and experimental structure of
β-structure 1N0D. The predicted structure agrees perfectly with the experimental
structure separated only by a RMSD of 0.85 Å. The RMSD-energy distribution of
sampled structures in Fig. 2b shows that the next unfolded structure is separated by
an energy-barrier of about 1kcal/mol . It is notable that apart from these two confor-
mations, no distinct other low energy conformations could be found. Furthermore the
native structure features an energetically unfavourable hydrophobic patch (dark red
spot in Fig. 2a, which could be predicted.

The collapsed coil-fold of 1FUV could be predicted to a RMSD of 2.4 Å (Fig. 2c).
Few different low-energy clusters of structures could be identified at 1, 4 and 5 Å
RMSD. The best discovered structure has a RMSD of 1.6 Å to the native structure and
is separated by a large margin of 5 kcal/mol to the next unfolded structure. The fold
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Fig. 4 Connectivity tree of all found distinct conformations of protein 1EGS below an energy of
6.3 kcal/mol. The connections show the relative RMSDs between the structure, while the labels show
the protein ID and the respective energy in kcal/mol. IDs correspond to the plots in Fig. 5

Fig. 5 Low energy conformations of peptide 1EGS. Energies are sorted in increasing order from a to g. h
is the experimental native conformation. Conformations c and g are connected to most of the other confor-
mations as only slight modifications are needed to transform them into either coiled or β-conformations

of 1EGS (Fig. 3a) resembles a distorted β-conformation. The usually stabilizing Zip-
per-mechanism is not pronounced as in 1N0D. 1EGS could be predicted to a RMSD
of 1.4 Å, which is separated by about 3 kcal/mol energetically from the next unfolded
conformation (Fig. 3c). Additionally the plot shows a reasonable correlation between
energy and RMSD for the low energy structures.

This correlation is also apparent and more strongly pronounced in the sampled
conformations of 2JQU seen in Fig. 3d. Three kcal/mol separate the native and
the next unfolded conformation sampled. There was no pronounced low energy
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conformation sampled with a RMSD bigger than 4.5 Å. This can be explained by
the fact that the native helical conformation (Fig. 3c) is stabilized mostly by local
interactions. Upon unfolding, the protein sacrifices most of its energy attained by
hydrogen bonds.

3.1 Low energy conformations of 1EGS

The low energy conformations of 1EGS were analysed using the clustering scheme
detailed in Sect. 2.4. Seven distinct low energy conformations were identified within
a range between −8.73 and −6.31 kcal/mol. The connectivity of the found structures
can be observed in Fig. 4. Two structures were considered adjacent, if their RMSD
was less than 2.5 Å. The minimum energy conformation is reachable from two dis-
tinct conformations 1.7 and 1.6 Å away. Structure C is the structure with the most
connections and acts like a travel hub among the low energy conformations. This is
easily understood, when analyzing the conformation of structure C. Figure 5c shows
structure C to attain a relaxed β conformation, which is in the vicinity of the native
conformation (Fig. 5h), the broken β conformation (Fig. 5b) and the partially helical
coiled conformation. (Fig. 5c). The higher energy structures are a warped β-sheet
(Fig. 5e) and a coiled helical turn similar to structure (C) in Fig. 5f. Due to the strong
shear of the highest analyzed energy conformation (Fig. 5f) , many of the low energy
conformations are in the vicinity either by increasing the shear leading to a coiled
structure or reducing the shear leading to the correct tertiary β-fold.

4 Conclusion

We have shown that our peptide prediction scheme can reliably predict peptide struc-
ture using a physical free-energy based approach for peptides of very different struc-
ture, including collapsed folds without apparent secondary structure. We could also
parallelize this on our volunteer computing network POEM@HOME to allow these
predictions in a short time.

The sampling runs did not only elucidate the structure of the peptides themselves,
but also their low energy ensemble of structures, which might be involved during the
folding and misfolding of the peptide. Here we could show possible fold-paths of the
low energy ensemble, the protein might even shift between in its active conformation.
This may enable further analysis to establish structure function relationships of the
peptide and thereby elucidate their biological activity.
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